Generating Multi-Sensor Precipitation Estimates Over Radar Gap Areas
نویسندگان
چکیده
Generating a multi-sensor precipitation product over radar gap area is the objective of the present study. A merging approach is developed to improve Satellite-based Precipitation Estimates (SPE) by merging with ground-based Radar Rainfall (RR) estimates because remote satellites are the only source that can collect information from areas where are inaccessible by ground-based radar and/or rain gauge networks. The merging algorithm is capable of extending radar information from pixels with available RR to their neighboring pixels with no radar information by merging RR with SPE, which is, usually, available for all pixels. SPE is combined with RR using the weighting-based approach of Successive Correction Method (SCM) after local bias correction of SPE with respect to RR. High resolution satellite infrared-based rainfall estimates from the NESDIS Hydro Estimator algorithm (HE), at hourly 4 km × 4 km basis, is selected to be merged with radarbased NEXRAD Stage IV rainfall measurements to generate rainfall product for the radar gap areas. To be able to validate the generated rainfall against NEXRAD, different size areas with available radar rainfall are selected as radar gap regions. The developed merging technique is evaluated for several study cases in summer 2003 and 2004. The results show that generated rainfall for the radar gap areas are more correlated with RR (average 0.67) than original HE with RR (average 0.36) and the RMSE between merged and radar rainfall (average 2.8 mm) is less than the RMSE between satellite and radar rainfall (average 4.48 mm). And also, the pattern and intensity of the generated rainfall for radar gap area became more similar to the pattern and value of RR. In addition, the enhancement of the generated rainfall with respect to RR is more significant for high rainfall amounts. Key-Words: Merging, Radar, Gap area, Precipitation, SCM, Satellite, Rainfall.
منابع مشابه
Precipitation estimation over radar gap areas based on satellite and adjacent radar observations
Continuous rainfall measurements from groundbased radars are crucial for monitoring and forecasting heavy rainfall-related events such as floods and landslides. However, complete coverage by ground-based radars is often hampered by terrain blockage and beam-related errors. In this study, we presented a method to fill the radar gap using surrounding radar-estimated precipitation and observations...
متن کاملIncorporating Satellite Precipitation Estimates into a Radar-Gage Multi-Sensor Precipitation Estimation Algorithm
This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE) that would objectively blend real-time satellite quantitative precipitation estimates (SQPE) with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimate...
متن کاملMulti-sensor analysis of extreme events in North-Eastern Italy
The North-eastern part of Italy is known to be one of the most rainy regions in Europe. In this paper three extreme events are analysed, using a multi-sensor observing system including a weather radar and a dense telemetric network of surface stations, recording precipitation, wind, temperature and relative humidity. The cases examined comprise two long lasting rainfall events impacting two dis...
متن کاملCharacteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region
Studies that investigate and evaluate the quality, limitations and uncertainties of satellite rainfall estimates are fundamental to assure the correct and successful use of these products in applications, such as climate studies, hydrological modeling and natural hazard monitoring. Over regions of the globe that lack in situ observations, such studies are only possible through intensive field m...
متن کاملEvaluation and Uncertainty Estimation of the Latest Radar and Satellite Snowfall Products Using SNOTEL Measurements over Mountainous Regions in Western United States
Snow contributes to regional and global water budgets, and is of critical importance to water resources management and our society. Along with advancement in remote sensing tools and techniques to retrieve snowfall, verification and refinement of these estimates need to be performed using ground-validation datasets. A comprehensive evaluation of the Multi-Radar/Multi-Sensor (MRMS) snowfall prod...
متن کامل